Kvadraturen til sirkelen
Kvadraturen til sirkelen er eit av dei tre kjende, uløyselege konstruksjonsproblema som matematikarane i gresk antikk sette fram. Dei to andre er fordoblinga av kuben og tredelinga av vinkelen.
Problemet består i, med hjelp av passar og linjal, å konstruere sida i eit kvadrat med same areal som ein gjeven sirkel. For at ein slik konstruksjon skulle vore mogeleg, måtte talet π (pi) vore eit algebraisk tal. Då Ferdinand von Lindemann i 1882 beviste at π er eit transcendent tal, følgjer det at problemet ikkje er mogeleg å løyse.
Bakgrunnsstoff
endreKjelder
endre- sirkelens kvadratur. (2011-10-21) I Store norske leksikon. Henta frå http://snl.no/sirkelens_kvadratur