Statistisk forventning

Forventning eller forventningsverdi er ein storleik innan sannsynsrekning. Forventninga til ein stokastisk variabel er ein verdi, slik at viss ein gjentek eksperimentet som ligg til grunn for variabelen mange gonger, vil gjennomsnittet av utfalla nærme seg forventninga. I det diskrete tilfellet er forventninga lik summen av sannsynet for kvart utfall, multiplisert med verdien av dette utfallet.

For ein stokastisk variabel X, skriv ein E[X] for forventningsverdien til X.

Definisjon

endre

Forventningsverdien til ein diskret stokastisk variabel

endre

Viss X er ein diskret stokastisk variabel, og tek verdiane x1, x2, ... med sannsyn høvesvis p1, p2, ... så er forventningsverdien E(X) gjeven ved

 

Viss X kan ta teljeleg uendeleg mange forskjellige verdiar, er denne summen ei uendeleg rekkje. I dette tilfellet eksisterer forventningsverdien E[X] berre viss denne rekkja konvergerer absolutt.

Forventningsverdien til ein stokastisk variabel med tettleiksfunksjon

endre

Viss ein stokastisk variabel X har tettleiksfunksjon f(x), er forventningsverdien gjeven ved

 

Forventningsverdien eksisterer berre viss integralet   konvergerer.

Generell definisjon

endre

Generelt blir forventningsverdien definert som følgjer: Viss X er ein P-integrerbar stokastisk variabel frå eit sannsynsrom (Ω, Σ, P) til  , der B er den borelske σ-algebra over   så definerast : 

Empirisk forventning

endre

Den empiriske motsatsen til forventning er gjennomsnittet. Forventning estimerast ofte ved gjennomsnitt og trimma gjennomsnitt og for symmetriske fordelingar òg ved medianen.

Eigenskapar

endre

Forventning er ein lineær operator, så for vilkårlege konstantar   og   og ein stokastisk variabel   gjeld

 

Døme

endre

Eit døme på ein diskret stokastisk variabel er gjennomsnittsresultatet av ei nlang serie med kast (100 eller fleire) med ein terning med 1-6 «auge» på sidene. Er terningen rett, dvs. riktig balansert, har kvar av sidene sannsynet 1/6 for å visast. Forventa mengd auge blir då 1/6 x 1 + 1/6 x 2 + 1/6 x 3 + 1/6 x 4 + 1/6 x 5 + 1/6 x 6 = 3,5.

Kjelder

endre