Ei talfølgje er ei følgje der elementa er tal. Viss alle elementa er heiltal, blir følgja kalla ei heiltalsfølgje. Døme på slike følgjer er følgja av primtal og Fibonacci-tala; slike følgjer opptrer gjerne i talteori og kombinatorikk. Meir generelt kan elementa vere reelle eller komplekse tal. Slike følgjer opptrer ofte i analyse og nærskylde felt.

Det er vanleg å skrive ei følgje ved notasjonen

Indekseringa byrjar vanlegvis anten med 0 eller 1.

Eigenskapar til følgje endre

  • Ei følgje er monotont veksande viss kvart element er like stort eller større enn det føregåande; det vil seie viss  . Viss berre element er større enn det føregåande, kallast følgja strengt monotont voksende. Omgrepa monotont fallande og strengt monotont falane blir analogt definert.
  • Ei følgje er avgrensa ovanfrå viss følgja har ein øvre skranke; det vil seie at det finst eit tal   slik at   for alle  . Tilsvarande er ei følgje avgrensa nedanfrå viss følgja har ein nedre skranke.
  • Ei følgje der annakvart element er positivt og annakvart element er negativt kallast ei alternerande følgje.
  • Viss elementa til alle følgjene er like, er følgja ei konstant følgje.
  • Viss følgja består av gjentakingar av ei endeleg delfølgje, blir følgja kalla periodisk.

Konvergens endre

Ei følgje blir sagt å konvergere mot eit tal   om tala i følgja kjem nærare og nærare   ettersom indeksen aukar. Formelt definerast dette slik:

Viss det for kvart opent intervall   rundt   finst eit tal   slik at   for alle  , så konvergerer følgja mot  , som kallast grenseverdien til følgja.

Alternativt kan ein seie at kvart ope intervall   rundt   inneheld alle unntatt ei endeleg mengd av elementa i følgja. Viss følgja er ei følgje av komplekse tal, blir omegn nytta i staden for intervall.

Eit døme på ei konvergent følgje er følgja   som er definert ved at   for  . Grenseverdien til følgja er 0 fordi viss ein tek eit kva for eit som helst ope intervall som inneheld 0, vil alle unntatt ei endeleg mengd av elementa i følgja liggje innanfor intervallet. Ei følgje som ikkje konvergerer, blir sagt å divergere. Eit døme på ei divergent følgje er  , der  ; denne følgja er ikkje avgrensa og kan dermed ikkje konvergere. Eit anna døme er  , der elementa er 0 og 1 annakvar gong.

Sjølv om ei følgje ikkje har nokon grenseverdi, kan han besitte opphopingspunkt. Verdien   er eit opphopingspunkt for følgja   viss kvart intervall som inneheld   inneheld uendeleg mange element i følgja. Følgja  , som vart nemnt ovanfor har to opphopingspunk, nemleg 0 og 1.

Teorien om konvergensen av uendelege følgjer er ein viktig del av grunnlaget for analyse. Blant anna er grenseverdien til funksjonar og definisjonen av derivasjon og Riemann-integralet basert på konvergens av følgjer.

Kjelder endre