Kontinuitetslikninga

Kontinuitetslikninga er ei differensiallikning som skildrar bevart transport av ein storleik. Sidan masse, energi, rørslemengd og andre naturlege storleikar er bevarte, kan mykje fysikk skildrast med hjelp av kontinuitetslikningar.

Alle døme på kontinuitetslikningar under uttrykket den same ideen. Kontinuitetslikingar er den (sterkare) lokale formal av bevaringslova.

Ei kontinuitetslikning har ei «differnsialform» (uttrykt med ein divergensoperator) og ei «integralform» (uttrykt med eit fluksintegral). I denne artikkelen vert berre differensialforma nytta.

Generelt

endre

Den generelle forma til ei kontinuitetslikning er

 

der   er ein storleik, ƒ er ein funksjon som skildrar fluksen til  , og s skildrar kor raskt   vert skapt eller fjerna. Denne likninga kan utleiast ved å sjå på fluksane i ein infinitesimal boks. Denne generelle likninga kan òg nyttast til å lage alle kontinuitetslikningar, frå enkle likningar som kontinuitetslikninga for volum til meir kompliserte likningar som Navier–Stokes-likningane. Denne likninga generaliserer òg adveksjonslikninga.

Elektromagnetisk teori

endre

I eletromagnetisk teori vert kontinuitetslikninga anten rekna som ei empirisk lov om uttrykker (lokal) ladningsbevaring, eller han kan utleiast frå to av Maxwell-likningane. Han fortel at divergensen til straumtettleiken er lik den negative endringa til ladningstettleiken,

 

Utleiing frå Maxwell-likningane

endre

Ei av Maxwell-likningane, Ampèrelova, seier at

 

Ved å ta divergensen på begge sider får ein

 

men divergensen til curlen er null, slik at

 

Ei anna av Maxwell-likningane, Gausslova, seier at

 

Ved å setje denne inn i likning (1) får ein

 

som er kontinuitetslikninga.

Tolking

endre

Straumtettleiken er rørsla til ladningstettleiken. Kontinuitetslikninga seier at om ein flyttar ladning ut av eit differensialvolum (t.d. at divergensen til straumtettleiken er positiv), så vil ladningsmenda i volumet minke, slik at endringsraten til ladningstettleiken er negativ. Derfor uttrykket kontinuitetslikninga ei bevaring av ladning.

Væskedynamikk

endre

I væskedynamikk er kontinuitetslikninga eit matematisk uttrykk som i alle prosessar for stasjonære tilstandar syner korleis endringa av masse som kjem inn i eit system er lik endringa av massen som går ut av systemet.[1] I væskedynamikk er kontinuitetslikninga analog til straumlova til Kirchhoff i elektriske kretsar.

Differensialforma av kontinuitetslikninga er:

 

der   er væsketettleiken, t er tid, og u er væskesnøggleiken. Om tettleiken ( ) er konstant, som er tilfellet i ein inkompressibel straum, så vert massekontinuitetslikninga forenkla til volumkontinuitetslikninga:

 

som tyder at divergensen til fartsfeltet er null overalt. Fysisk er dette det same som å sei at den lokale volumspreiinga lik null.

Navier-Stokes-likningane dannar ei kontinuitetslikning på vektorform som skildrar bevaring av lineær rørslemengd.

Kvantemekanikk

endre

I kvantemekanikk gjev bevaring av sannsyn òg ei kontinuitetslikning. La P(xt) vere ein tettleiksfunksjon og skrive

 

der j er sannsynsfluksen.

Fire-straumar

endre

Bevarging av ein straum (ikkje nødvendigvis ein elektomagnetisk straum) kan uttrykkast kompakt som den lorentzinvariante divergensen til ein fire-straum:

 

der

c er lysfarten
ρ er ladningstettleik
j den konvensjonelle straumtettleiken.
μ merkar romtid dimensjonen

så sidan

 

så impliserer

 

at straumen er bevart:

 

Sjå òg

endre

Kjelder

endre
  1. Clancy, L.J.(1975), Aerodynamics, Section 3.3, Pitman Publishing Limited, London