Ein integrator er eit instrument som ved hjelp av summerering finn «areal». Moderne integratorar er som oftast elektoniske, bygd med passive komponentar[1], eller aktive, bygd rundt ein operasjonsforsterkar[2], eller numeriske, òg kalla digitale integratorar, realiserte i maskinvare eller i programvare[3].

Aktiv krins: Integrator bygd rundt ein operasjonsforsterkar

endre
 
Ein elektronisk integrator.

Elektrisk straum er ladning per tidseining:  , så ladninga kan uttrykkast  . Den inverterande inngangen på operasjonsforsterkaren ligg på virtual jord-potensiale, så inngangsstraumen  . Etter som inngansimpedansen til operasjonsforsterkaren er svært stor må   flyta inn i kondesatoren, slik at

 

Kondensatoren får da ei ladning

 

Etter som

 

der   er spenninga over kondensatoren. Utgangsspenninga   er den same som spenninga over kondensatoren, og kan uttrykkast

 

Det er  -leddet   som avgjer kor følsam integratoren er, dvs. for snøggt utgangsverdien endrar seg.

Frekvensrespons

endre
 
Frekvensrespons for integrator og LP-filter.

Integrasjon i tidsplanet tilsvarar divisjon med   i s-planet, så transferfunksjonen blir

 

der   er Laplace-operatoren. Parameteren   er kompleks frekvens, der   er demping,   og   er frekvens, i rad/s.

For å finna frekvensresponsen set vi  , slik at  . Vi plottar så talverdien

 

med logarithmisk frekvensakse og med talverdien i dB. Frekvensresponsen til integratoren fell med 20 dB/dek når frekvensen aukar, eller aukar med 20 dB/dek når frekvensen minkar, slik at han er uendeleg stor ved frekvensen null. Integratoren har difor uendeleg stor forsterking for likespenning. Vi ser òg at tidskonstnten   skalerer responsen.

Modifikasjon for å unngå metting

endre

På grunn av bisasstraumane i inngangane på forsterkaren og for at det alltid er litt usymmetri i elektroniske krinsar vil det alltid gå ein liten straum inn til eller ut frå i kondensatoren, sjølv om inngangen blir lagt til jord. Utgangsspenninga   vil difor går mot maks positiv eller maks negativ verdi. Utgangen går med andre ord i «metting». Dette kan ein òg sjå frå frekvensresponsen, som syner at forsterkinga er uendeleg stor for likespenning.

Etter som integratoren ikkje er brukbar slik han står, må det ein liten modifikasjon til. Han kan gjerast brukbar ved å legga til motstanden  , vist strippla. Dette er ein «lekasjemotstand», som ladar ut kondensatoren;   må ha ein stor verdi, ofte i M -området, for at han ikkje skal ladda ut kondensatoren for snøgt.

Lekasjemotstanden endrar integratoren til eit LP-filter, vist med raud strek i frekvensplanet. Knekkfrekeneen kan plasserast vilkårleg langt nede ved å velja ein stor verdi på  .

Integratorar vert nytta for løysing av differensiallikningar, i samband med simulring, reguleringsteknikk, osv. Integralutrekninga er ei form for arealutrekning. Dei vert òg nytta i regulatorar, der ein ynskjer å halda ein eller annan verdi konstant. I forsterkarar vert integratorar ofte nytta for å detektera likespenning på utgangen, slik at denne kan kansellerast ved hjelp av negativ tilbakekopling. Dei inngår òg som byggeklossar i mange forskjellige samanhergar innan instrumentering, S/H-krinsar, osb.

Histori

endre

Planimeter og integraf er døme på tidlege former for integratorar. For å avgjere integralkurver for fleire klassar av differensiallikningar, konstruerte Vannevar Bush i 1931 den mekaniske differensialanalysatoren, som vart vidareutviklia av Svein Rosseland ved Astrofysisk Institutt i Oslo[treng kjelde].

Referansar

endre
  1. Kuo, F.F., Network analysis and synthesis, 2. utg., Willey, 1966.
  2. Floyd, T.L., Electronic devices, 10. utg., Pearson, 2018.
  3. Strum, R.D. og Kirk, D.E., First principles of discrete systems and digital signal processing, Addison-Wesley, 1989.

Sjå òg

endre